Author Affiliations
Abstract
1 University of Texas at Austin, Austin, Texas 78712, USA
2 SUPA Department of Physics, University of Strathclyde, Glasgow, Scotland G4 0NG, United Kingdom
3 Tau Systems, Inc., Austin, Texas 78701, USA
4 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
5 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
6 Brookhaven National Laboratory, Upton, New York 11973, USA
7 Ludwig-Maximilians-Universität, Munich, Germany
An intense laser pulse focused onto a plasma can excite nonlinear plasma waves. Under appropriate conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. This scheme is called a laser wakefield accelerator. In this work, we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields. We find that a 10-cm-long, nanoparticle-assisted laser wakefield accelerator can generate 340 pC, 10 ± 1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence. It can also produce bunches with lower energies in the 4–6 GeV range.
Matter and Radiation at Extremes
2024, 9(1): 014001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!